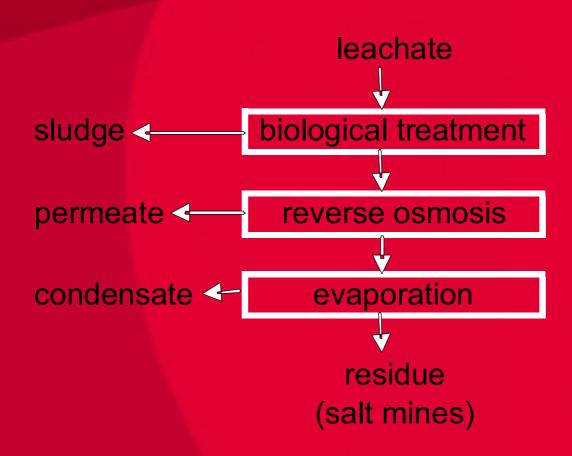

Leachate treatment by direct capillary nanofiltration

Hans Woelders Second Intercontinental Landfill Research Symposium Asheville NC, October 2002

Presentation:



- Introduction; present leachate treatment
- Membrane filtration
- Pilot scale research with nanofiltration
- Proposed full scale plant
- Prospective of nanofiltration in leachate treatment.

Present system:

Effluent standards:

• COD 50 mg/1

• BOD 5 mg/1

• Total nitrogen 10 mg/l

• Chloride 200 mg/l

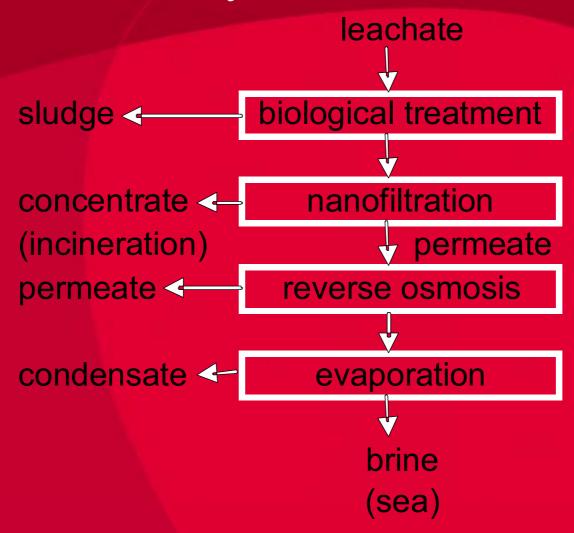
Biological pretreatment

Reverse-osmosis

Evaporation plant

Why research?

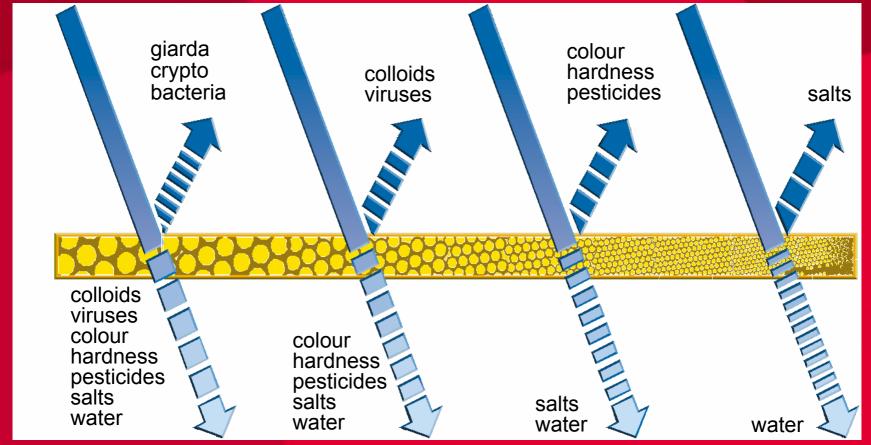
- The existing system is expensive (all-in €18/ m³ leachate)
- The tubular RO-system is technically spoken no more "state of the art"
- The high amount of residue (10,000 tons/a) makes the system not sustainable.



The objectives of nanofiltration are:

- Reducing the amount of residue by separating the monovalent salts (chloride, potassium and sodium) from the other components in the leachate and discharge of the brine to the sea
- Concentrating the organic compounds, heavy metals and organic micro pollutants.

Proposed future system:



Filtration techniques:

Micro Filtration

Ultra Filtration Nano Filtration Reverse Osmosis

100-1000 nm

10-100 nm

1-10 nm

< 1 nm

Nanofiltration modules:

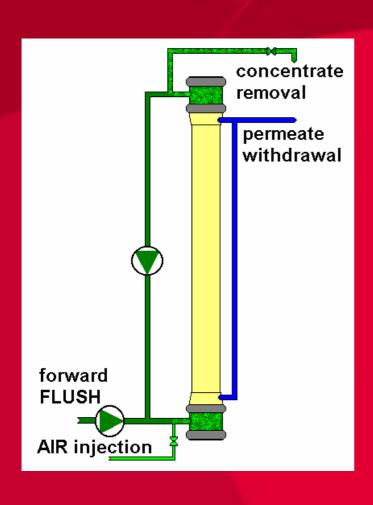
- Tubular modules (d=15 mm, TMP=20 bar)
- Plate modules (TMP=20 ba)
- Spiral wound modules (TMP=20 bar, fouling!)
- Capillary modules (TMP=6 bar)

-essent MILIEU

Capillary NF module:

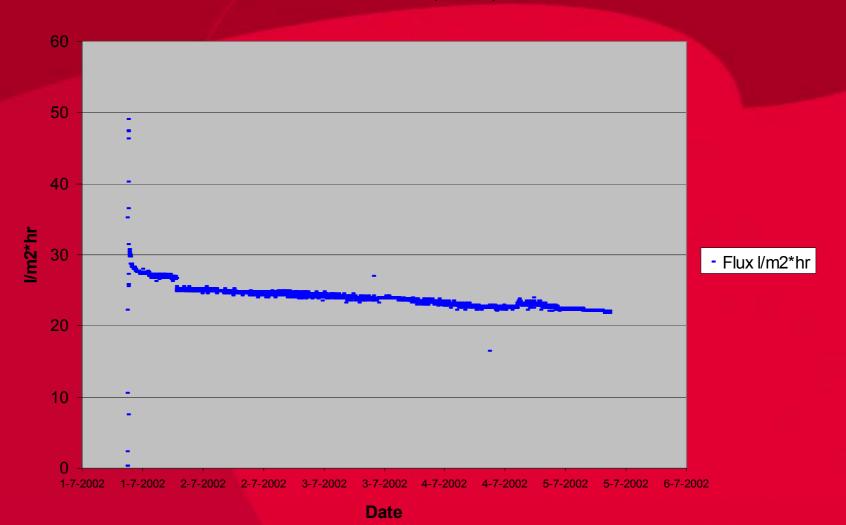
- Capillary diameter1.5 mm
- Composite membrane
- Poly-ethersulfon carrier
- Polyamide-coating
- Module length 1.5 m
- Membrane surface
 20 m²/module

Pilot plant:



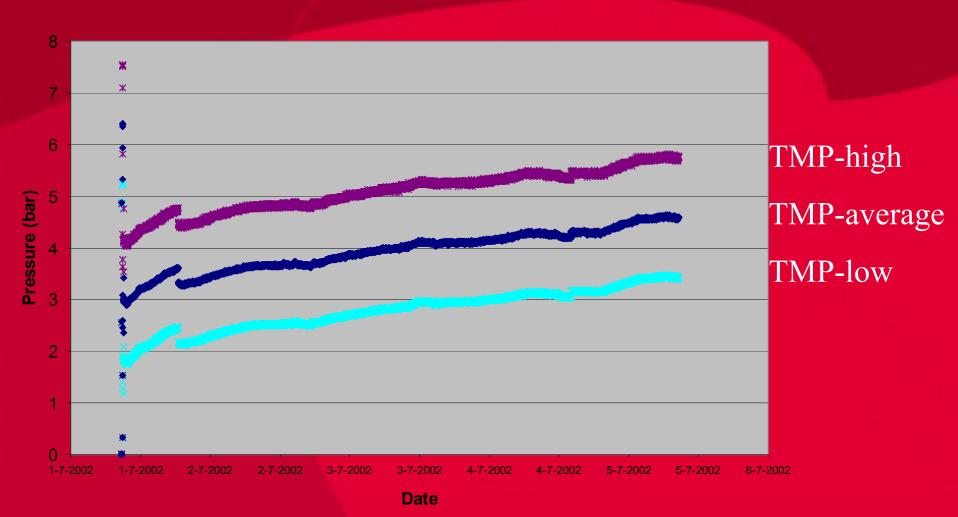
- Input is biologically pretreated leachate
- Micro sieve 200 μm
- pH adjustment (6.8-7.2)
- Anti-scalant supply
- Trans membrane pressure (max) 7 bar

Flow scheme:



- Horizontal velocity approx. 2 m/sec
- Cross-flow operation; continuous feed and bleed
- Different concentration factors (CF 2 till 20)
- $CF = V_{input}/V_{concentrate}$
- Different pretreatment methods
- Different cleaning policies
- Main "problem" is fouling of membranes

Flux:



Flux I/m2*hr (Run 14)

Trans membrane pressure: essent

NF pressure TMP (Run 14)

Results:

CF	Temperature	TMP	Flux
	(^{0}C)	(bar)	(1/m ² hr)
2	15-17	2.8-4.2	31-35
4	32-35	2.7-5.0	26-22
10	32-38	2.2-6.0	21-18

Qualities (CF = 10):

influent NF = effluent bio-treatment

influent NF = effluent bio-treatment						
	A		-622	sent		
parameter	unit	raw leachate	influent NF	permeate NF		
COD	mg/l	2500	1500	105		
BOD	mg/l	150	5	1		
NKj	mg/l	1200	60	4		
C1	mg/l	3000	3000	3050		
SO_4	mg/l	240	220	60		
Cd	μg/l	5	2	0.2		
Hg	μg/l	0.15	0.10	0.01		
PAH(16)	μg/l	0.50	0.09	0.025		
EOX	μg/l	0.6	0.4	0.1		

Colors:

influent NF

effluent NF

Pretreatment tests:

- Biocides; intermediate supply of chloramines!!!
- Biological treatment by a biofilm-system?
- Fiberfitration (3 μm)?
- Anti-fouling additives? (dispersion chemicals)

Cleaning of the membranes:

- Alkaline cleaning (pH 11) with good results
- periodically extra cleaning by:
 - acid cleaning agents
 - oxidation by peroxide
 - enzymatic (detergents) agents.

Proposed full scale plant:

- 30 m³/h permeate
- 8 stacks of 10 modules
- automatic CIP("cleaning in place")
- modules of 20 m²

Costs:

• Investment: 900,000 € (mechanical-electrical equipment)

• Operation costs: 1.70 €/m³ permeate

including: - depreciation 10 years

- membrane replacement 3 years

- interest 6%

- maintenance and operator

- electricity and chemicals

- Step 1: biological treatment (reducing O₂-consumption)
- Step 2: nutrient removal (N and P)
- Step 3: removal of color (COD), heavy metals, organic micro pollutants by activated carbon or *nanofiltration*
- Step 4: desalination by reverse-osmosis.

Prospective of anofiltration in leachate treatment (2):

- Find a solution for the NF-concentrate:
 - incineration
 - recycling to the landfill
 - adsorption to...
- Research into feasibility in respect to landfill charge and skilled operators.