"Utilization of ashes in landfill construction" in 3rd ICLRS December 2nd, 2004

Air permeability, diffusion coefficient, and tortuosity of incineration ash

Toshihiko Matsuto Hokkaido University, Japan

1

Capillary tube model

Permeability

$$v = \underbrace{\left(\frac{r^2}{8\mu_g}\frac{\varepsilon}{\xi}\right)}_{R_g} P_0 - P_L = \underbrace{K_g}_{L} P_0 - P_L$$

v: Darcy's velocity of the gas [m s⁻¹]

ɛ: gas porosity [-]

K_g: Gas permeability [m²Pa⁻¹s⁻¹]

The <u>relation between r and ξ </u> is obtained once Kg is determined.

Permeability measurement (Kg)

Binary gas diffusion

 x_i : mole fraction of gas component "i" D_0 : diffusion coefficient between two gas

Based on mass balance

$$\frac{\partial x_1}{\partial t} = \underbrace{\frac{D_{12}^0}{\xi}}_{\partial z} \frac{\partial^2 x_1}{\partial z^2} = D_e \frac{\partial^2 x_1}{\partial z^2}$$

Tested material

BW	Under-sieve fraction of shredded bulky waste. Metal is recovered.			
IW	Under-sieve fraction of shredded incombustible wate.			
IA	Incineration ash (bottom ash)			
Old IA	Incineration ash dug out from landfill			
S	Sand of particle size between 2-2.8 mm			

Composition of waste

Particle size distribution

9

Influence of water saturation on permeability

Determined parameters (dry)

	ε [–]	K [m ²]	ξ[-]	r [mm]
Bulky waste	0.51	4.6 x 10 ⁻¹⁰	2.9	0.14
(shredded)	0.61	6.7 x 10 ⁻⁹	3.3	0.52
Incombustible	0.44	4.9 x 10 ⁻¹⁰	3.2	0.17
(shredded)	0.25	2.1 x 10 ⁻¹⁰	2.5	0.13
	0.50	4.6 x 10 ⁻¹²	n.a.	
	0.39	2.1 x 10 ⁻¹⁰	10.7	0.21
	0.44	5.7 x 10 ⁻¹¹	6.2	0.079
	0.47	7.3 x 10 ⁻¹¹	6.0	0.086
Old MSWI ash	0.40	1.8 x 10 ⁻¹¹	7.7	0.051
Sand	0.26	2.9 x 10 ⁻⁹	1.8	0.39

Influence of water saturation on tortuosity

12

Estimation of ε/ξ as function of ε

