Outer Loop Landfill EPA/WMI Bioreactor Research

2nd Intercontinental Landfill Research Symposium Asheville, NC 14 October 2002

David Carson

Office of Research and Development National Risk Management Research Laboratory

Cincinnati, OH, USA

Presentation Content

 EPA Bioreactor CRADA with Waste Management, Inc.
 Initial Data from Research Project
 Supporting Research
 Discussion Questions

Bioreactor Fundamentals

- In simplest form, leachate reintroduced to the waste mass
- In more complex forms, sequenced addition of liquids, air or other combinations performed with aim of controlled, accelerated degradation

Bioreactors - Potential Benefits

Bioreactors reduce long-term environmental risk

- Bioreactors act as on-site leachate pre-treatment systems, produce less potent leachate
- New bioreactors require relatively few physical modifications compared to traditional landfills
- Bioreactor techniques may be applicable to landfill remediation
- Bioreactors produce the same amount of methane, but at a faster rate corrective actions.

Key Performance Objectives

- As a research effort: identify key operating parameters and develop guidance on operation and monitoring
- Demonstrate environmental protection benefits of bioreactor operational technique via enhanced control of leachate and gas

Bioreactors – Research Challenges

- How can bioreactors enhance environmental protection?
- Which bioreactor operational techniques most efficiently degrade waste?
- How can operators distribute leachate and collect gas efficiently?
- Is an interim cover necessary to cover a waste mass that is settling?
- How do operators ensure physical stability over time?
- How much moisture addition is optimal for degradation?
- What limitations exist for natural degradation?
- When can the landfill be "switched off" and closed?
- Can post-closure care be reduced?

ORD Bioreactor Research

Bioreactor CRADA

- » Cooperative Research and Development Agreement with Waste Management Inc.
 - Share tasks and information
 - Signed in 2000 designed to end in 2005
- Supporting and Related Research Projects

 State-of-the-Practice of Bioreactor Landfills
 Microbial Temporal Analysis of Waste Degradation
 Liner/GCL Interaction with MSW Leachate

 Upcoming EPA Bioreactor Workshop in February 2003

EPA

CRADA Bioreactor Research Team

CRADA Project Objectives

- To determine the parameters and trends that should be monitored to control and assess the performance of a bioreactor landfill.
 - Leachate
 - Gas Management/Fugitive Emissions
 - Solids Decomposition
- Two primary sites
 - Area 7 New fill
 - Area 5 Existing fill to be retrofitted, and will use nitirified leachate to control ammonia levels
 - Shared experimental control area

EPA

Outer Loop Landfill, Louisville, KY

Experimental Design

- Facultative Landfill Bioreactor (FLB) and Aerobic-Anaerobic Landfill Bioreactor (AALB) treatments
- Conventional (no leachate addition) landfill control
- Treatment and control units composed of independent, paired cells

Source: Jim Markwiese, Neptune and Co.

Critical Measures

Critical measures were selected to capture waste stabilization

Example: Volatile Organic Acids

Critical Measures

♦ Leachate

»BOD, COD, Temperature, pH, VOA's

Municipal Solid Waste/Solids

»Biochemical Methane Potential, Organic Solids, Temperature, Settlement (GPS), Density, pH, Moisture Content

♦ Gas

»Methane, Carbon Dioxide, Oxygen, Volume

Facultative Bioreactor

Leachate / Liquids Addition
Gas Collection

Outer Loop Unit 5

Unit 5 Trench Schematic

Unit 5 Trench Infiltration/Gas Collection Gallery

Unit 5 Sub Cell Arrangement Gas Monitoring

Aerobic-Anaerobic Bioreactor

Leachate / Liquids Addition Gas Collection Air Injection

Outer Loop Unit 7

Initial Results Unit 5 Gas

Unit 5.1 Gas Composition vs. Time

EPA

Figure Courtesy of Neptune, Inc.

Unit 5.2 Gas Composition vs. Time

EPA

Figure Courtesy of Neptune, Inc.

Modeled v. Actual Methane Production Unit 5

EPA

Modeled v. Actual Methane Production Unit 5

Initial Results Unit 5 Leachate

Outer Loop Unit 5 Leachate Sampling

Outer Loop Unit 7 Leachate Sampling

PEPA

Unit 5 Cumulative Liquid Addition and AUF vs. Time

Unit 5 Liquid Addition and Leachate Removal vs. Time

Unit 5 Leachate BOD/COD vs. Time

ВЕРА

Figure Courtesy of Neptune, Inc.

Unit 5.1A Leachate Composition vs. Time

Initial Results Unit 5 Solids

Baseline Waste Sampling

Baseline Waste Sampling

Solids Analysis

Unit 5.1A Waste and Ambient Temperature and Leachate Addition vs. Time

Figure Courtesy of Waste Management, Inc.

Unit 5 Waste Density vs. Time

Figure Courtesy of Waste Management, Inc.

Unit 5 Waste Volume vs. Time

Figure Courtesy of Waste Management, Inc.

Unit 5 Airspace Recovery vs. Time

EPA

Figure Courtesy of Waste Management, Inc.

Fugitive Air Emissions Monitoring

Static FTIR - Background

Scanning FTIR

9/13/2002

Summary

Project is in the initial stages of a multiyear study
 This project, coupled with supporting research will enhance understanding of bioreactors

 Project XL
 Assessment of Bioreactor Performance Study

Early bioreactor results are as expected

CRADA Next Steps

Continue Monitoring

Revise Monitoring Plan as Needed

Issue Interim Report in 2003
Issue Detailed Technical Report in 2005

Discussion Questions

- Q. How effective is bioreactor technology in achieving desired aims?
- A. Too early to tell at this project, but beneficial trends as expected.
- ♦ Q. What research gaps exist?
- A. Which monitoring parameters needed at working fills to maintain control.
- ♦ Q. What challenges were faced?
- A. Continuity of operations, retrofitting of system to existing fill, changing waste stream, daily operations, permit proceedings

Discussion Questions (cont'd)

- Q. What recommendations can be made for future design and operation?
- A. Waste placement planning, gas collection timing
- Q. How were instruments used in process control?
- A. Parameter control is direct for some parameters, delayed for others, data management is a concern

US EPA Office of Research and Development

WASTE MANAGEMENT

