FLORIDA BIOREACTOR DEMONSTRATION PROJECT: Design and Construction Experiences

Debra R. Reinhart, Timothy G. Townsend, Philip T. McCreanor

Presented at the ICLRS Asheville, NC October 11-16, 2002

Project Objectives

- Demonstrate the full-scale use of bioreactor technology
- Evaluate aerobic bioreactor technology
- Compare aerobic and anaerobic processes
- Control and measure all inputs and outputs

BIOREACTOR LANDFILL DEMONSTRATION PROJECT

www.bioreactor.org

Moving Florida into the 21st Century:

a cooperative bioreactor landfill project that will demonstrate the efficient mass treatment of municipal solid waste.

For more information, please visit our website.

ENGINEERS

DARABI AND ASSOCIATES, INC. Environmental Consultants Edmunds & Associates, Inc.

PROJECT MANAGER Florida Crater for Solid & Hazardons Wate Management

Florida Bioreactor

- New River Regional Landfill serving 5 counties, approximately 800 tons/day
- 46 lined acres, up to 75 ft in height
- Bioreactor ~ 10 acres
 - 576,000 yd³, ~ 287,800 tons of waste
 - Construction cost \$2,174,798
 - Design cost \$639,887

NRRL Bioreactor Construction Aerial – View to North

March 24, 2002

Unique Design/Construction Issues

- Leachate isolation and flow measurement
- Air introduction
- Liquid addition
- Exposed membrane cap
- Settlement accommodation
- Gas extraction

Leachate Isolation and Flow Measurement

- 9 leachate collection lines isolated via manhole modification
- Ultrasound level measurement and v-notch weir
- Tied to gas collection system

Air/Water Injection

Aerobic

- 25% of bioreactor (2.5 acres)
- 1550 scfm of air
- 2350 gpd water
- Anaerobic
 - 4860 gpd water
- Requires supplemental moisture

Blowers/Gas Extraction

Exposed Membrane Cap

- Objectives
 - Complete capture of gas
 - Control of moisture addition
 - Control of side seeps
 - Evaluate gas composition
 - Issues
 - Ballooning of cap
 - Buildup of Explosive gases
 - Heat buildup
 - Cap penetrations/tiedown

Deploying Geomembrane

As soon as geomembrane is pulled over wells, location is marked.

At a later time, the geomembrane is cut around well.

Fusion Welder

Geomembrane rolls are fusion welded together with a double hot wedge weld.

Cap – Anchor Trench

Cap Penetrations

West Side Toe Drain

Gas Collection

Skid-Mounted Gas System

Operating Issues

Special Permit Requirements

- Operations Plan
- Reporting
- Limits on recirculation
 - First 250 days (to achieve field capacity) 35,040 gpd
 - After field capacity maximum design flow 6395 gpd
- Side slope monitoring of pore pressures
- Initial daily monitoring of temperature, O₂, CH₄
- Monitoring and response to potentially explosive conditions

Bioreactor Monitoring

- In Situ Moisture Content
- In Situ Temperature
- Leachate and Gas Quantity and Quality
- Topography (GPS)

Features of the MTG sensor

- Granular matrix resistance sensor.
- Incorporates thermocouple and gas sampling tube.
- Glass fiber wicks for enhancing moisture transfer.

Instrumentation and Injection Wells

Moisture Distribution in landfill

Bottom Moisture Level

Legend 21.3 - 26.8 26.8 - 32.3 32.3 - 37.7 37.7 - 43.2 43.2 - 48.7 48.7 - 54.1 54.1 - 59.6 59.6 - 65.1 65.1 - 70.5

Global Positioning System

www.bioreactor.org