Intercontinental Landfill Research Symposium

October 13-16, 2002, Asheville, N.C., USA

Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

Ramin Yazdani, Project Manager Yolo Count Planning and Public Works Department Division of Integrated Waste Management Ramin.Yazdani@yolocounty.org (530) 666-8848

1/21/2003

RECYCLES

Presentation

- Project Site
- Design differences
- Project partners
- Project Goals and Objectives
- Achievements to Date
- Design and Construction Challenges
- Economics
- Future Tasks
- Conclusions

Project Location Map

Project Site Map

Project Phase 1 & 2

Project Site Map

- Primary composite liner better than Subtitle D and CA Title 27 prescriptive standards
- Clay permeability better (6x10⁻⁹
 cm/sec) than 1x1⁻⁷ cm/sec
- Secondary containment (40 mil HDPE) to protect groundwater
- Leak testing of primary liner system to locate pin holes

Design Differences from a Conventional Landfill

- No soil cover used within the waste mass as daily or intermediate cover
- Horizontal gas collection system installed at 40 to 80 feet at each lift
 - Install pressurized horizontal leachate injection lines within the same trench as the gas collection system
- Install temperature, pressure transducers, tubes, and moisture sensors to collect real time data
- Use real time monitoring (SCADA)
 system
 1/21/2003

Project Partners & Funding

Project Partners:

- Yolo County-DIWM (\$2,753,000)
- California Energy Commission-PIER (\$1,154,250)
- National Energy Technology Laboratory, U.S. DOE (\$563,000)
- California Integrated Waste Management Board (\$400,000)
- Institute for Environmental Management (Tech. Support)
- U.S. Environmental Protection Agency
- Solid Waste Association of North America
- California State Regional Water Quality Control Board
- California State Water Resources Control Board
- California Air Resources Control Board
- Yolo-Solano Air Quality Management District
- Yolo County Environmental Health

Project Goals and Objectives

- Collect technical and economic data to demonstrate full-scale operation as beneficial
- Provide technical solution to permitting and regulatory constrains in the commercialization of this technology
- U.S. EPA XL project ("eXcellence and Leadership")

Regulatory Requirements

What is EPA Project XL?

- Project XL, stands for "eXcellence and Leadership"
- It is a national pilot program that tests innovative ways of achieving better and more cost-effective public health and environmental protection
- Under EPA Project XL Yolo County can obtain state and federal regulatory flexibility to implement innovative Full-scale Bioreactor
 - The goal is to engage those parties affected by environmental regulations and policies to <u>find solutions</u> <u>that work better than those currently mandated</u>
 - What is learned will be applied broadly to improve public health and environmental protection

EPA XL Project Schedule

- Project XL application submitted in 1999
- Permits issued by CA State Agencies-6/2000
- Final Project Agreement signed-9/2000
 - Federal rule making completed by EPA-8/2001
- Construction (2000-2002)
- Data collection and reporting (2001-2005)

Project Objectives

- Full-scale operation to accelerate waste decomposition through liquid addition without liquid head build up over the base liner
 - Efficient capture of nearly all methane generated without an impact to the local air quality
- Document capital and operation's cost of project - commercialization

Achievements to Date

Construction of base liner system

Achievements to Date

Construction of landfill waste filling

Achievements to Date

Construction of the instrumentation system

Achievements to Date

Construction of the SCADA System

SCADA System for Bioreactor

SCADA-Leachate Injection System

SCADA Real Time Data

SCADA Control for Leachate Injection System

	'ola	Central	Land		CADAlarm Inactive	i 🔇 🕲 🔤	🥏 💦 🍏 👪 🛱
ANAEROBIC	<u>C LEAC</u>	<u>HATE INJECT</u>	TON CONT	ROL A Layer Contro	3&4 ➡ Di Valy	Max # of Solenoid ves Open at any Time	1
LAYER 1			Schedule A	Schedule B	Schedule A&B	Central	Control
Value 1	Class	Enable/Disable				Auto/Manual	
Yahua 2	Class	En Dia	0:00	0:00			
Valve 2	ciuse		0.00	0.00		Auto Manual	
Valve 3	Close	En Dis	0:00	0:00		Auto Manual	
Valve 4	Close	En Dis	0:00	0:00		Auto Manual	ONOFF
Valve 5	Close	En Dis	0:00	0:00	0 min	Auto Manual	OFF
Valve 6	Close	En Dis	0:00	0:00	0 min	Auto Manual	ON OFF
Valve 7	Close	En Dis	0:00	0:00	0 min	Auto Manual	ON
Valve 8	Close	En Dis	0:00	0:00	0 min	Auto Manual	ON
LAYER 2	Call	Enable/Disable	Schedule A Start Time	Schedule B Start Time	Schedule A&B Duration	Central Auto/Manual	Control Manual On/Off
Valve 1	Close	Enable/Disable				Auto Manual	
Valve 2	Close	En Dis	0:00	0:00	0 min	Auto Manual	
Valve 3	Close	En Dis		0:00		Auto Manual	
Valve 4	Close	En Dis		0:00		Auto Manual	
Valve 5	Close	En Dis		0:00	0 min	Auto Manual	
Valve 6	Close	En Dis		0:00		Auto	
Valve 7	Close	En Dis	0:00	0:00			
Turre I	01000						
				SLC Time 0:0	0		
ᇌ 🔀 🖪			AEAN	H 💁 4:4 9/5	7:01 5/02		PASSWORD DELAY 999,999 sec 34,077 sec PRESET TIMER

SCADA- Real Time Data Export to Database

Yolo Bioreactor Home Page

🚰 BLMS-HOME - Microsoft Internet Explorer

Bioreactor Landfill Monitoring System Division of Intergrated Waste Management, Planning and Public Works, County of Yolo, California

Produce Graphical Report Generate XY Graph (2D) Generate Map Open Grapher Open Surfer roduce Tabular Report Generate Tabular Report Open Crystal oad Data Electronically Wonderware Data Field Parameter Analytical Parameter Survey Data inter,Update,Query Data Application Reference BLMS Bioreactor Landfill Project Project Team Exit Home

The Yolo County Central Landfill is demonstrating an innovative landfill management strategy called "enhanced or controlled" landfilling to manage solid waste. Controlled landfilling has the potential to provide reliable energy generation from solid waste, as well as significant environmental and solid waste management benefits such as reduced pollution threat, reduction of greenhouse gas emissions, landfill life extension , and reduced post-closure maintenance.

1/21/2003

_ 8 ×

Yolo Bioreactor-Web Based Data Extraction and Graphing

Horeact	or Landfill Monit	oring System	
ivision of Intergrate	d Waste Management, Planning and Public W	orks, County of Yolo, California	
duce Graphical Report	How To ?	Generate XY Graph	
erate Map			
n Grapher	Parameter:	Location: 💽 or Area: 💽 or	
en Surfer duce Tabular Deport	StartDate: 3/28/02	EndDate: 4/5/02	
erate Tabular Report	5 to 1 5 7 2 5 7 2 1	Endbate. [1/0/02	
n Crystal	Retrieve Data Now		
d Data Electronically			
nderware Data			
lytical Parameter	Generate XY Graph		
vey Data			
er,Update,Query Data			
lication			
erence	Other available files. Double click on file name to generate	XY Graph.	
S	GP-MOISTURE_AN2GPM_Mar1302_Apr1802.bd	2235 7/22/02 4:56:21 PM	
eactor Landfill Project	GS-MOISTORE_ANZGSM_MARI302_APri802.00	2438 //22/02 4:56:21 PM	
ject Team	MOISTURE_CIM_NUV2201_Decoul.ut		
	MOISTURE_C24M_Mar2802_Apr302.00		
% /	MOISTURE_C2M_Jan2882_Jul 382.0t	1247 7/22/02 4:56:22 DM	
	MOISTURE C3M_NOV2201_Dec601.tvt	1317 7/22/02 4:56:22 PM	
	MOISTURE CTLCell Nov2201 Dec601 txt	543 7/22/02 4:56:22 PM	
	MOISTURE E1M Nov2201 Dec601 bt	697 7/22/02 4:56:22 PM	
	MOISTURE E2AM Nov2201 Dec601.txt	954 7/22/02 4:56:22 PM	-
	MOISTURE E2M Nov2201 Dec601.txt	2006 7/22/02 4:56:23 PM	
	MOISTURE E3M Nov2201 Dec601.txt	1941 7/22/02 4:56:23 PM	
	MOISTURE ENHCell Nov2201 Dec601.txt	683 7/22/02 4:56:23 PM	
	PRESSURE AOP Mar1202 Apr1902.txt	1043 8/7/02 9:31:26 AM	
	PVC-MOISTURE AE0!5PVCM Mar2802 Apr502.txt	277 7/22/02 4:56:24 PM	
	PVC-MOISTURE AE0PVCM Mar2802 Apr502.txt	339 7/22/02 4:56:24 PM	
	PVC-MOISTURE AE1PVCM Mar2802 Apr502.txt	1866 7/22/02 4:56:24 PM	2
	PVC-MOISTURE_AE2PVCM_Mar2802_Apr502.txt	1311 7/22/02 4:56:24 PM	

Yolo Bioreactor-Sample 2D Graphs from Database

Bioreactor Bottom Liner Temp.

Tempature (degree C)

Achievements to Date

Construction of landfill gas collection and removal system

Achievements to Date

Collection of 2x10⁶ SCF fugitive landfill gas (45% methane) from 3.5 acre anaerobic bioreactor before water addition

Achievements to Date

- Construction of leachate recirculation and pumping system
- Injected of over 850,000 gallons of leachate in the anaerobic 3.5 acre landfill

Achievements to Date

Construction of final cover system

Achievements to Date

First waste sampling and testing

Achievements to Date

First waste Settlement Survey

Achievements to Date

 Fugitive methane emissions monitoring using FID/PID Vapor Analyzer (FOXBORO TVA-1000)

Achievements to Date

- Landfill gas sampling (LANDTECH GEM-500) and laboratory testing
- Leachate sampling and laboratory testing

Design and Construction Challenges

- Liner cap design and construction
- Installation of instrumentation after waste filling
- Securing installed liner and penetration of pipes through the cap
- HDPE Injection lines-drilling and installing fittings
- Pressurized Leachate injection system-inspection for leaks

ECONOMICS-Capital Cost for Bioreactor

Capital Cost per Ton of Waste (360,000 tons, 12 acres, 1,200 lbs/c.y.)

Annual Operating Cost Estimate

Annual Opearting Cost per Ton of Waste (360,000 tons, 12 acres, 1,200 lbs/c.y.)

Benefits of Bioreactors

Total Benefit per Ton of Waste (360,000 tons, 12 acres, 1,200 lbs/c.y.)

Present Worth Benefit/Cost

Present Worth Benefit Cost Ratio (360,000 tons, 12 acres, 1,200 lbs/c.y.)

Remaining Tasks for the 3.5 acre Anaerobic Bioreactor

- Complete the second surveying event to monitor waste settlement
- Conduct the second round of waste sampling and testing
 - Perform surface scan monitoring for methane emissions
- Monitor and sample leachate
- Monitor and sample landfill gas
- Report results

Remaining Tasks for the 6 acre Anaerobic Bioreactor

- Complete installation of instrumentation and monitoring system
- Complete installation of the surface liner system
- Complete installation of the leachate injection and pumping system

Remaining Tasks for the 6 acre Anaerobic Bioreactor

- Complete installation of the landfill gas collection and removal system
- Conduct the second round of waste sampling and testing
- Complete the first surveying event to monitor waste settlement
- Install, and troubleshoot the SCADA system

Remaining Tasks for the 6 acre Anaerobic Bioreactor

- Perform surface scan monitoring for methane emissions
- Monitor and sample leachate
 - Monitor and sample landfill gas
- Begin operation and report results

Remaining Tasks for the 2.5 acre Aerobic Bioreactor

- Complete installation of blower and piping
- Complete installation of the biofilter
- Begin liquid injection and air suction
 Perform surface scan monitoring for methane emissions
- Monitor and sample leachate
- Monitor and sample biofilter air samples
- Begin operation and report results

Conclusions

Bioreactors can be:

- Designed to protect the environment more than the conventional landfills
- Be operated in a safe manner
- Be Constructed with normal equipments
- Instrumentations be installed as filling
- Early gas collection under cover to reduce fugitive emissions via horizontal layers
- Inject leachate slowly to not impact head over the liner within waste lifts

Conclusions

Bioreactors can be:

- Inject leachate horizontally within the waste to distribute moisture
- Be design to be operated by SCADA
- system
- Collect real-time field data for monitoring and control
- Create a master database for data management and reporting
- Economical to construct and operate

