Development of Model Parameters for the Prediction of Methane Production From Paper Industry Landfills

Presented at

The Second Intercontinental Landfill Research Symposium

Van Maltby, NCASI Dr. Morton Barlaz, North Carolina State University October 13-16, 2002 Asheville, North Carolina, USA

Landfill Gas Emission Research

 Clean Air Act - Title V
 emission factors based on MSW landfills
 HAPs linked to emission rate

Global climate change issues

First Order EPA Equation (LandGEM)

$$Q_{CH4} = L_0 R(e^{-kc} - e^{-kt}); m^3/yr$$

where:

- Q_{CH4} = methane generation rate
- $L_0 = m^3$ methane / Mg refuse
- R = refuse acceptance rate, Mg/yr
- k = decay constant
- c = time since closure, yrs

Typical Paper Industry Wastes

Residuals: lignocellulosic waste - e.g., "sludge"

Combustion ash: fly ash
silicates, inert material

Causticizing wastes: alkaline material

←Woodyard Waste: gravel, bark

Residuals Terminology

Primary Residuals: Primary treatment
 wood fibers, clay, CaCO₃, pigments, inert materials

Secondary Residuals: Biological treatment
 microbial biomass

Combined Residuals: Mixture of primary and secondary residuals (improved handling)

Industry-Wide Landfill Contents

Multi-Phase Project

Phase 1 - Evaluation of the EPA-recommended
 approach to predicting air emissions from pulp and paper
 industry landfills (September 1999)

 \leftarrow Phase 2 - Laboratory development of L₀

←Phase 3 - Field development of k

Phase 2 - L₀ Laboratory Reactors

←6-in. diameter PVC, 4 liter volume

- Anaerobic conditions
- ←Operated at 38^oC, long-term
- Intermittent mixing

Experimental Design - Lab Study

Optimize conditions for L₀
pH, temperature, moisture
5 residuals from various production categories
Effects of nutrient and seed addition
Effects of ash and causticizing waste addition
blended at "typical" ratios
L₀ for MSW (ground truth)

Laboratory Reactor Tank (L₀)

Combined Residuals Cumulative Methane (per gram)

Terminal Analyses - Residuals B (Combined + Nutrients)

	Fresh	Decomposed
Cellulose	21.5%	5.4%
Lignin	14.7%	18.7%
BMP	76.7	3.9
(ml/g)		

Terminal Analyses - Residuals C (Combined + Nutrients)

	Fresh	Decomposed
Cellulose	20.8%	0.6%
Lignin	12.0%	12.3%
BMP	45.9	6.3
(ml/g)		

Phase 3 - k Field Study Reactors

- ←10-in dia. PVC, 76-liter volume
 ←anaerobic conditions
 ←landfill temperature
- ←precipitation addition
 (HELP model)
- ←leachate removal

Construction of Field Site

Construction of Field Site

Field Reactors Cumulative Methane Generation (per gram) One Set of Combined Residuals Reactors

Field Reactors' Latest pH Readings

Combined 1-3	5.65
Combined 4-6	5.79
Primary 7-9	5.84
Primary 10-12	6.23
Lab Primary 1-2	6.17
Lab Primary 3-4	6.23

Interim Observations

Methane production rate influenced by pH
Seed addition not necessary to initiate methane production in residuals reactors
Causticizing waste inhibited methane production
Wood ash had no significant effect

Interim Observations -continued-

 Nutrient addition had no significant effect on combined residuals L_0 Greatest methane volume and rate in MSW •Most residuals produced less than half the volume of methane produced by MSW \leftarrow Primary residuals - lower k, L₀ *Field reactors still in lag phase?*