Shear Strength of Municipal Solid Waste

M. A. Gabr, M. S. Hossain, and M. A. Barlaz

Department of Civil Engineering North Carolina State University Raleigh, NC 27695

Problem Statement

Explanation of Measured Shear Stress-Displacement

Impact of Degradation on Strength Properties

Waste Decomposition Phases (Barlaz et al 1989)

Aerobic Phase
Anaerobic Acid Phase
Accelerated Methane Phase
Decelerated Methane Phase

Waste Decomposition Phases

Shear Strength of MSW

Landva and Clark (1986) - old refuse
 Friction angle =38° to 42°
 Cohesion = 16 to 19 kPa
 1 Year later :Friction angle = 33°
 Cohesion = 16 kPa

Howland and Landva (1992) - 10 to 15 years old refuse
 Friction angle
 Cohesion
 = 17 kPa

Shear Strength of MSW

Gabr and Valero (1995) - 10 to 15 years old refuse
Friction angle =20° to 39°
Cohesion = 28 kPa to 0
15 % increase in moisture, 50% decrease in cohesion

Shear Strength (Edincliler et. al., 1996)

Sample Preparation

Generation of Waste Samples

Reactor	Test Condition	
Set		
1	Leachate Recirculation	
	and Neutralization	
2	Leachate Recirculation	

Reactor Operation and Monitoring (1)

Sample Collection

Reactor Design and Loading

Reactor Monitoring and Operation

Reactor Operation and Monitoring (3)

Incubation Conditions
 Data Collection
 Gas Volume
 Gas Composition
 pH
 Solid Analysis

Generated Samples

Reactor-9 : Sampled after 24 days (Sample B1)

Reactor-14 : Sampled after 53days (Sample B2)

Generated Samples

Reactor-12 : Sampled after 78 days (Sample B3)

Reactor-11 : Sampled after 127 days (Sample B4)

Experimental Program – Shear Strength Parameters

Sampl e No.	(C+H)/L	Direct Shear	Sample Description
1	1.29	3	Sample at the initial stages of decomposition
2	0.73	3	Sample at accelerated methane production Phase
3	0.38	3	Samples at decelerated methane production phase
4	0.25	3	Samples at stable methane production phase
5	Fresh Paper	3	Fresh shredded paper
6	Plastics	3	All material except plastics were removed from samples at (C+H)/L=0.38;
7	Degraded paper, organics and textiles	3	Plastics were removed from samples at (C+H)/L=0.38;

Direct Shear Equipment

100 mm Direct Shear Cell

Result Discussions

Methane Production Rate

Monitored pH with Time

Monitored (C+H)/L ratio with Time

Repeatability of Data – Shear Strength

Mobilized Strength Incompatibility

•Variation of Friction Angle with Degradation

Major Components of MSW:

- Paper + Organics 60-65%
- Plastics 10-12 %

Shear Strength - Plastics

Shear Strength Fresh Shredded Paper

Shear Strength Paper+textile+organics

Strength Incompatibility

- MSW is made from materials having different stiffness characteristics
- Strength of different components mobilized at different deformation level
- Shape of shear stress-shear displacement curve depends on composition
- This means strength dependency on composition and deformation level
- This leads to the concept of <u>Component</u> <u>Frequency and Sample Probability</u>

Shear Strength with Degradation

Summary and Conclusions

(C+H)/L, correlates with Strength parameters Mobilized strength incompatibility within the MSW components was observed due to presence of different type of materials Testing representative samples is essential What is a representative sample? Shear strength decreased with decomposition Strength increased with shearing displacement and failure envelope (is nonlinear