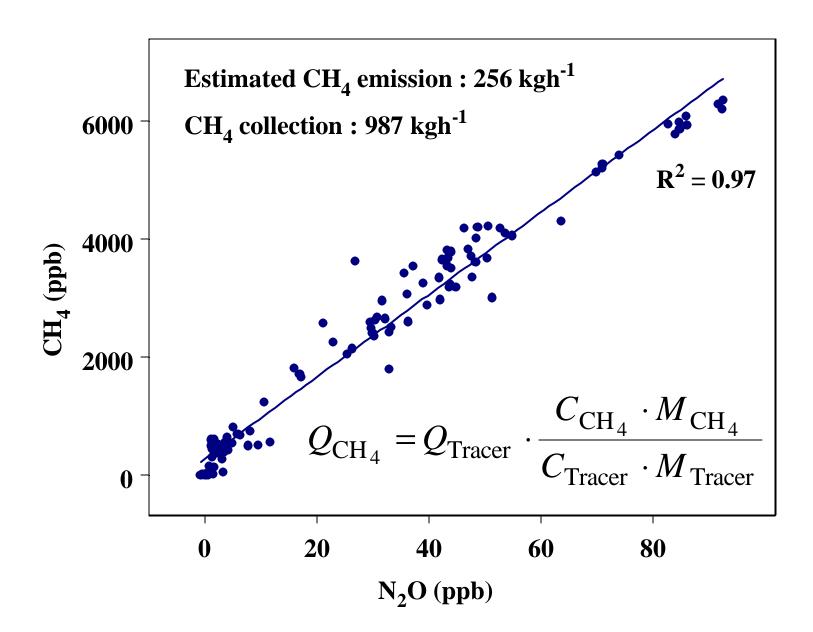
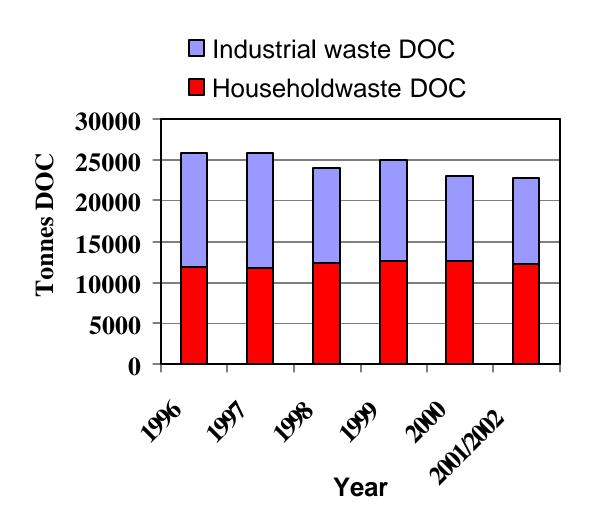

A case study of methane emission and methane oxidation at a large scale Swedish landfill


Jerker Samuelsson and Bo Galle, Chalmers University of Technology, Sweden

Gunnar Börjesson and Bo Svensson, Linköping University, Sweden

Jeff Chanton, Florida State University, USA



Date	Gas collection	Emission to atmosphere	atm.	Methane oxidation estimate	Total CH ₄ production	Atmospheric emission part of total CH ₄
	kg CH₄ h ⁻¹	kg CH ₄ h ⁻¹	emis- sion	%	kg CH ₄ h ⁻¹	production %
4 th	- T	<u> </u>			<u> </u>	
Apr 01	852	308	0.94	12 ^{*)}	1202	25.6
16 th						
Nov 01	832	385	0.94	12.20	1270	30.3
23 rd						
Nov 01	820	441	0.82	10.30	1312	33.6
29 th	740**	- 4 - **\	0.00	7.00		4.4.0**)
Nov 01	718**)	547**)	0.89	7.60	1310	41.8**)
6 th						
Dec 01	987	256	0.97	4.60	1255	20.4
7 th						
Dec 01	1006	361	0.92	4.60	1384	26.1
2 nd						
Jul 02	806	346	8.0	20 ^{*)}	1239	27.9

^{*)} Marked methane oxidation rates assumed or still not processed
**) Gas collection system partly in start-up after some days of service stop

Calculation of the fraction of the degradable organic carbon that is converted to landfill gas, ${\rm DOC_F}$ - and comparison with model value

In case of a steady state situation the input of DOC should be stable and balanced by the total LFG production

Total CH₄ production, 7 measurements: $1282 \text{ kgh}^{-1} \pm 4.6\%$

Extrapolated production Nov01-Jun02: 7444 tonnes CH₄

$$CH_4 \ produced = \frac{CH_4 \ emitted \ to \ atmosphere}{1-part \ oxidised} + CH_4 \ collected$$

$$DOC_{F} = \frac{CH_{4} \ produced}{(DOC \ land filled) \times (CH_{4} \ content \ in \ LFG) \times (M_{CH4} / M_{C})}$$

Methane content in the landfill gas, 7 measurements: $57.6 \pm 5.9 \%$

Total DOC landfilled Nov01-Jun02, based on 10 waste analyses (8 industrial, 2 household) by the landfill operator: **14777 tonnes DOC**

Recommended value of the DOC_F factor for Sweden: **0.7**

DOC_F value obtained from the Filborna data: **0.66**

Outlook:

Short term variability in atmospheric CH₄ emission and influence of air pressure fluctuations (no clear tendency seen in the presented measurements, with air pressure ranging from 1001 to 1040 hPa, and gradients from -1.1 to 0.77 hPa h⁻¹)

Final results of methane oxidation rates

Acknowledgements:

We would like to thank STEM (Swedish Energy Agency) and RVF (Swedish Association of Waste Management) for funding the project, and NSR for good co-operation, site and data supply.