Simulation model for gas diffusion and methane oxidation in landfill cover soils

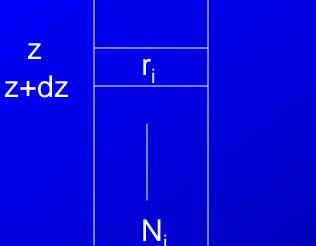
Alex De Visscher and Oswald Van Cleemput

Ghent University, Belgium

Outline

- Introduction
- Model development
- Results & discussion
- Conclusions

Introduction


- Cover soils can reduce the CH₄ emission by landfills.
 - \Rightarrow Models can help optimize CH₄ oxidation.
- CH₄ oxidation in landfill cover soils is poorly quantified.
 - \Rightarrow Models can improve inventories.

Model development

- Basic assumptions:
 - Gross LFG flux is log-normally distributed.
 - For each gross flux a 1-D model of diffusion and CH₄ oxidation applies.
 - Integration of the obtained oxidation rates leads to total CH₄ oxidation.

1-D model: Mass transport

Transient mass balance:

$$\boldsymbol{e} \frac{\partial y_i}{\partial t} \frac{P}{RT} = \boldsymbol{r}_{\text{DB}} r_i - \frac{\partial N_i}{\partial z}$$

Nonfickian diffusion:

$$-\frac{P}{RT}\frac{\partial y_i}{\partial z} = \sum_{\substack{j=1\\j\neq i}}^n \frac{N_i y_j - N_j y_i}{D_{\text{soil},ij}}$$

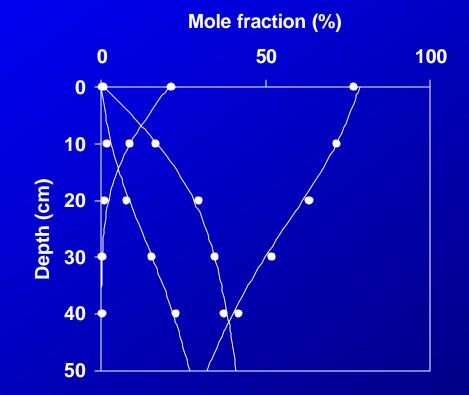
1-D model: CH₄ oxidation

CH₄ oxidation rate: $r_{CH_4} = -\frac{V_{max}[CH_4]}{K_m + [CH_4]} \cdot \frac{[O_2]}{K_{O_2} + [O_2]}$

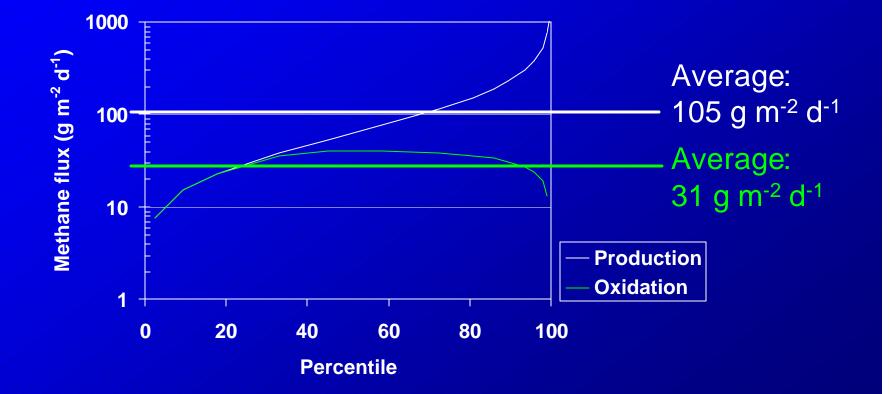
Stoichiometry: $CH_4 + 1,5 O_2 \rightarrow 0,5 CO_2$

Microbial growth:

$$\frac{\mathrm{d}\,V_{\mathrm{max}}}{\mathrm{d}t} = \boldsymbol{m}\,V_{\mathrm{max}}$$


with: $\mathbf{m} = \frac{\mathbf{m'_{max}} \left(1 - \frac{V_{max}}{V_{max, max}}\right) CH_4}{K_m + [CH_4]} - a$

Parameter values


At room temperature:

- $-V_{max,max} = 750 \text{ nmol CH}_4 \text{ kg}^{-1} \text{ s}^{-1}$
- $K_{\rm m} = 6600 \text{ ppm CH}_4$ in the gas phase
- $-\mu'_{\rm max} = 2,2 \, \rm d^{-1}$
- $-a = 0,1 d^{-1}$
- Temperature correction:
 - Correction factor for V_{max} , μ'_{max} and a: $Q_{10} = 2.8$
 - $-K_{\rm m}$ increases linearly with temperature

Result: concentration profile

Extrapolation to field conditions

Conclusions

- The model correctly predicts concentration profiles in a laboratory set-up.
- Extrapolation to real landfill cover soils leads to a year-round average methane oxidation efficiency of 30%.
- Decreasing the heterogeneity of the gross LFG flux can improve the methane oxidation efficiency.