Defining the End of the Post-Closure Monitoring Period

Morton A. Barlaz* Dept. of Civil Engineering North Carolina State University

Introduction

How to define the end of the post-closure monitoring period?

- traditional landfills
- leachate recycle/bioreactors

Introduction

- In the US, the post-closure monitoring period is 30 years unless it is extended by the governing regulatory agency
 - technical criteria are lacking and needed:
 - to reduce, extend or modify the monitoring period

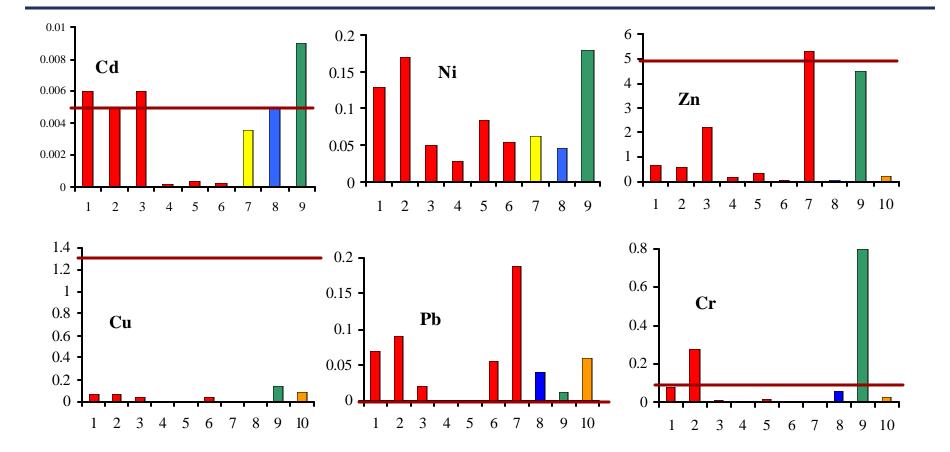
Career Objective

 Develop and implement a protocol that will make it possible to determine when postclosure monitoring can be reduced or stopped Factors to Consider in Long-Term Monitoring

- Leachate composition
- Leachate production
- Leachate release to surface and ground water
- Gas production
- Geotechnical characteristics

Leachate Composition

Numerous publications on long-term leachate quality


♦ Organic strength —

BOD:COD ratio < 0.1

necessary but not sufficient

- Nutrient concentration
 - high ammonia is typical

Metals: Drinking Water Quality

Leachate Composition: Trace Organics

- Simple model (MOCLA) suggests volatiles are released in gas within a decade
- Data on long-term trends for trace organics are needed
- Slow desorption will not lead to concentration increases -- so trends should be lower

Leachate Composition

- Bulk organics (BOD &COD)
- Ammonia
- Metals
- Trace Organics

Leachate Quantity

 How much leachate can be expected and how will it be managed?

Quantity

- field studies/data from double-lined landfills
- calculation based on efficiency
- calculation based on defect density

Leachate Quantity: Calculation

 100-acre (40.5 ha) site receiving 40 in (100 cm) ppt/yr @ 99% collection efficiency

• BOD:

• 10 mg/L = 4.5 mg/acre/day (11.1 mg/ha/day)

COD

• 100 mg/L = 45 mg/acre/day (111 mg/ha/day)

◆ NH₃-N

• 750 mg/L = 341 mg/acre/day (843 mg/ha/day)

Leachate Quantity

- Field data: 0.5–22 gal/acre/day (4.7–206 L/ha/day)
- 7–3 mm holes/acre = 0.14 gal/acre/day (1.3 L/ha/day)
- 99% collection efficiency: 0.12 gal/acre/day (1.12 L/ha/day)
- ♦ 99% efficiency can be achieved

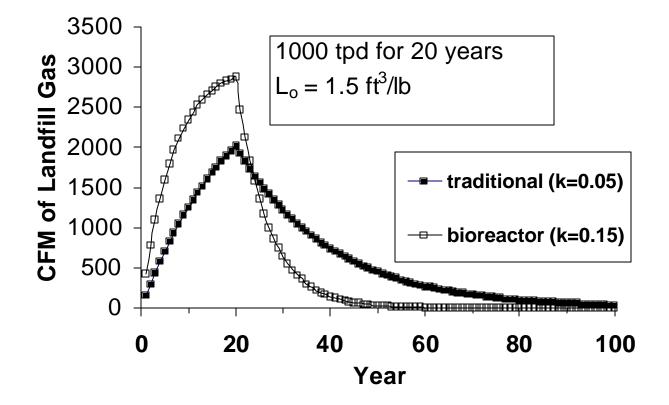
Environmental Impacts of a Leachate Release

- Water quality modeling
 - release of leachate to the environment is worst case
 - study environmental impact for assumed leachate and receiving stream characteristics using a dissolved oxygen depletion model

• focus on BOD, NH₃-N and dissolved oxygen

Groundwater Quality

- The leachate O₂ demand when released at 10.7 gal/ac-day [100L/(ha-day)] with 250 mg-N/L cannot be met by an aquifer, even with a high saturated thickness (65.6') and a high transport velocity (0.33 ft/d)
 - lack of perfect mixing will further limit plume degradation
 - this suggests that a 10.7 gal/ac-day release to the subsurface will likely be unacceptable


Groundwater Quality

- Monitoring Strategy and Trace Organics
 - BTEX and CAHs are compounds of greatest concern
 - CAHs degrade anaerobically in landfill
 - BTEX degrade readily under aerobic conditions
 - A leachate release will likely drive an aquifer anaerobic
 - Monitor DO!

Gas Production

- Quantity of gas produced at end of post-closure monitoring period
- When can a landfill go from active collection to passive venting?

Methane Production in Traditional and Bioreactor Landfills

Criteria

- Explosion hazards and VOC migration
 - monitor vadose zone for ??? years after turn off an active gas collection system
- Odor problems
 - are there complaints after deactivation of a landfill gas collection system?
- Mass emissions
 - Regulatory guidance and constraints

Geotechnical Stability

- Trends in settlement data could be used to evaluate whether additional settlement is expected.
 - should a post-closure termination request include settlement data?
 - data could be used to evaluate cover inspection schedule.

Proposed Approach

- Evaluate site-specific impacts using a modular/flexible approach
 - leachate mass release rates
 - is leachate present in the collection system?
 - Are there seeps?
 - what is its composition and quantity?
 - identify receiving body to evaluate impact

Proposed Approach

- Gaseous emissions
 - are odors a problem?
 - is their evidence for gas migration?
- Cover stability
 - evidence that settlement is complete

Summary

- Is monitoring ever really finished??
 - perhaps what changes is the monitoring frequency or the components of the landfill to be monitored

• cover

- leachate production
- gas migration

Ongoing Work

Detailed protocol development and case studies

The focus is potential environmental impact

Divide and Conquer

- Separate evaluation for:
 - leachate
 - gas
 - cover
 - groundwater

Divide and Conquer

- Verification Monitoring
 - are concentrations below a standard?
 - are changes to current control mechanism(s) justified?
- Surveillance Monitoring
 - Geometrically reducing sampling/inspection program
- Implement End Use

Leachate Evaluation

- Is the mass flux increasing or decreasing?
 - If decreasing, are concentrations suitable for direct release (i.e. drinking water standards)?
 - **yes**: verification monitoring, followed by geometrically reducing surveillance monitoring
 - no: is mass release to receiving body acceptable (i.e. dissolved oxygen depletion model)?

 yes: verification monitoring, followed by geometrically reducing surveillance monitoring

no: risk assessment or continue post-closure monitoring

Case Studies

- Similar logic diagrams for gas, cover and groundwater
- If all impacts are acceptable, what must be done to maintain this situation?
 - cover inspection -- which is cheaper than groundwater monitoring
 - implement an end use that necessitates maintenance

Additional Reading

Kjeldsen, P.K. et al., 2002, "Present and Long Term Composition of MSW Landfill Leachate – A Review," Critical Reviews in Environmental Science and Technology, 32, 4, p. 297 - 336.

Barlaz et al., 2002, A Critical Evaluation of Factors Required To Terminate the Post-Closure Monitoring Period at Solid Waste Landfills," Environ. Sci. & Technol., 36, 16, p. 3457 - 64