Production of Non Methane Organic Compounds (NMOCs) During the **Decomposition of Refuse and Individual Waste Components Under** Various Operating Conditions

Stephen J. Cowie*, NC State University, Raleigh, NC, USA, (sjcowie@unity.ncsu.edu) John C. Ihnatolya, Withers & Ravenel, Cary, NC, USA, (j_ihnato@bellsouth.net) Gary Hater, Waste Management, Cincinnati, OH, USA (ghater@wm.com) Dr. Morton A. Barlaz, NC State Univ., Raleigh, NC, USA, (barlaz@eos.ncsu.edu)

Objectives

- Develop a basic understanding of the production of NMOCs and VOCs during refuse decomposition
- Compare NMOC release under different conditions for decomposition
- Measure NMOC yields for individual waste components
- Evaluate the relationship between refuse decomposition and NMOC production
- Identify major components of NMOCs in landfill gas Evaluate the significance of household
- hazardous waste (HHW) as a contributor to **NMOCs**

Experimental Design

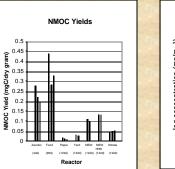
- Seven series of reactors plus a control
- Triplicate 8-L reactors
- Seeded with leachate
- Leachate recycle and neutralization at 37°C

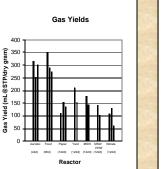
Treatments

- Anaerobic decomposition of residential food waste
- Anaerobic decomposition of a mixture of grass, leaves, and branches
- Anaerobic decomposition of a paper mixture
- Anaerobic decomposition of residential MSW
- Anaerobic decomposition of residential MSW plus HHW
- · 2g of HHW mixture added per kg of wet refuse -- nail polish remover. paint thinner, motor oil
- Residential MSW decomposed under NO₃-reducing conditions
- Residential MSW decomposed under aerobic conditions for 44 days followed by methanogenic conditions
- Control to measure background NMOC production from leachate seed

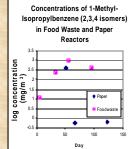
Equipment

- 24 8 L teflon coated reactors with 1.5 L glass leachate collection vessels
- For aerobic reactors an additional port was drilled in the bottom for air flow
- The air flow system consists of an air regulator gage, 2 KOH traps (removes CO₂), DI H₂O Humidifier, 3 flow gages, 3 water traps
- > 10 L and 20 L gas sampling bags with a 2 mil tedlar inner bag and an aluminum laminar cover
- > Teflon coated tygon or kynar tubing


Anaerobic Reactor Design


Preliminary Results

- · NMOC yield from food waste is highest and the yield from paper is lowest. . This is consistent with the fact that paper has the most pure and narrow range of
- degradable organics · Aeration resulted in the production of more NMOC relative to anaerobic MSW
- decomposition
- The presence of household hazardous waste appears to be a minor contributor to NMOC
- · High gas yields are only roughly correlated with high NMOC yields
- · Food waste has a wider array of speciated organics than paper waste
- Food waste has relatively high concentrations of terpenes (α-pinene, β-pinene, γterpinene, camphene) while paper does not contain these compounds


Yield

MOC

Concentrations of a -Pinene in

Comparison of Volatile Organics in Food Waste and Paper (mg/m³)

	Paper	Food waste
Compound	(day 66)	(day 67)
1-Butanol	2.11	5.24
1-Propanol		5.55
2-Butanone	0.748	37
2-Methyl-1,3-Butadiene	Carl South	0.749
2-methyl-1-butene	0.571	4.38
2-Pentanone		2.32
2-Propanol		3.11
Acetone	0.472	
α-Pinene		23.8
Benzene	0.148	
beta-Pinene	Contract of the	7.39
Camphene		3.08
cis-2-Pentene		0.71
Ethanol	1.61	
Ethyl Acetate		0.83
Ethylbenzene	0.399	0.394
γ-Terpinene		8.87
isobutylbenzene		1.22
m&p-Xylenes		1.42
octane		1.76
o-xylene		0.516
Pentane		2.02
t-Butanol	0.624	
Toluene	0.954	0.795

Future Work

- Specific organic compounds will be identified and quantified
- > The significance of abiotic gas stripping and decomposition byproducts on NMOC yields will be studied
- Gas samples will be analyzed for carboxylic acids

Acknowledgement

The financial support of Waste Management Inc. is greatly appreciated.